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ABSTRACT

A frictionless nonlinear model with allowance for motions which are far from a state of geostrophic
balance is considered in order to describe the dynamics of outflows consisting of two layers of fluids.
The governing equations are solved by means of perturbation expansions, conformal mapping and
Fourier series. The theory is compared with laboratory experiments.

The model predicts that an outflow from a channel with uniform velocity distribution defiects to
the right in the Northern Hemisphere. The parameters of the problem are combined in such a way
as to show that rotational effects are important whenever the ratio between the internal Froude number
to the Rossby number is not negligible; the inverse of this ratio has a ‘‘critical’’ value, below which the
flow separates from the left basin bank. The mathematical analysis shows that an outflow from a channel
with initial negative relative vorticity approximately equal to the Coriolis parameter deflects to the left.
As in the uniform flow case the flow separates from one of the banks under certain ‘“critical”” conditions.

Two experimental systems which included an abrupt cross-sectional variation in a rotating channel
consisting of two layers were used. The experimental results compare favorably with the direction of
deflection predicted by the mathematical model. Possible application of this study to the Straits of
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Gibraltar and other outflows are discussed.

1. Introduction

In a previous paper (Nof, 1978; hereafter referred
to as N) outflows of a homogeneous layer of fluid
were considered. Since most outfiows in nature
consist of two fluids with different densities we shall
extend the study to a two-layer system.

As in the single layer case, our aim is to study the
dynamical behavior of the outflows; that is, to find
the general characteristics of the process which the
flow enters into after reaching the open sea. Follow-
ing N, we address ourselves to straits and estuaries
which are relatively deep [O (10-100) m] and wide
[O (1-10) km] since it can be shown that for such
conditions the neglect of diffusion, entrainment and
friction is justified for the purpose of our study. The
entrainment criteria given by Ellison and Turner
(1959) and eddy viscosity and diffusivity estimates
suggest that with the above conditions the time scale
required for penetration of the ambient fluid and
frictional effects into the core of the plume is much
larger than that required for completing the adjust-
ment process. This results in negligible effects of
entrainment, diffusion and friction.
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The hydrostatic and the rigid lid approximation
are invoked but the primary motions are not con-
strained to be quasi-geostrophic. The potential
vorticity equation and the Bernoulli integral yield
a pair of nonlinear second-order partial differential
equations which are solved by means of perturbation
expansions in powers of the internal Froude
number, conformal mapping and Fourier series.
Two solutions are considered and presented in
Sections 2 and 3; one includes an outflow from a
channel with uniform velocity distribution (Section
2) the other an outflow from a ‘‘short strait”’ where
convergence of the upper layer causes an initial
shear in the channel (Section 3).

Two experimental systems consisting of a layer of
fresh water lying above a salty water layer were
used in the laboratory in order to assess the validity
and weaknesses of the theory. The experimental
procedures and results are presented in Section 4.
Section 5 discusses possible applications of this
work, and 6 summarizes the theoretical and experi-
mental work. Details of the mathematical solutions
are presented in the Appendix.

2. Outflow from a channel with a uniform flow

The model shown in Fig. 1A. We consider the
cases in which both the channel and the basin



862

X TOP VIEW
z
Grn
‘ jw {Hxy)
V,% 1|-|° v TP I
L R
&(x.y) Y
w
A
SIDE VIEW

B SIDE VIEW

FiG. 1. Geometry of model and definition of variables. Case
(A)—an outflow from a channel with uniform velocity distribu-
tion. Case (B)—outflow from a short strait. n and ¢ are
measured positively upward and downward respectively.

consist of two layers since it appears to be the most
common situation in real estuaries and sea straits
[see for example Defant (1961) and Officer (1976)].
In nature the two flows are in opposite directions
but to simplify the model the lower layer is assumed
to be deep and motionless. It is assumed that in the
channel near the outlet the Coriolis force is balanced
by the lateral pressure gradient, i.e.,

Vo = gf'8m/0x = gAp(pf)~0¢/0x,

where £ is the interface displacement, p the density
and Ap the density difference between the layers.?

2 Unless otherwise stated the notation used hereafter is
identical to the one defined by N.
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This assumption seems to be realistic for long
channels where the time scale allows the flow to
reach such a balance near the outlet. Cameron and
Pritchard (1963) report that the Coriolis force was
found to be balanced by the lateral pressure gradient
in a number of inlets and estuaries. The rigid lid
approximation is valid for this model as long as
Ap/p < 1 since then |1;| < |§|

a. The governing equations

The potential vorticity equation and the Bernoulli
integral for the upper layer are (see, e.g., Whitehead

et al., 1974)
Vu (Vab/h) + f= hK@{), (2.1
Va(Vpd/h)? + g'(h — Hy) = G(¥), (2.2)

where K() = dG({)/dy, g’ is the ‘‘reduced
gravity’’ given by g’ = gAp/p, and H, is the up-
stream average depth of the upper layer.

In order to determine the functions G(¥) and
K() it is necessary to evaluate the upstream de-
pendence of & on . The upstream depth of the
upper layer is

hi=H, + & = Hy + fVox/g', (2.3)

where the subscript i denotes that the variable in
reference is in its ‘‘initial’’ state (i.e. in the channel).
The transport function  is a single valued function
of x:

Y= f
= H\Vo(x + b) + fVEH(x%2 — b?)/2¢'. (2.4)

Note that due to the interface tilt s is not linear
in x even though the velocity is uniform. Eliminating
x between (2.3) and (2.4) yields

h(¥) = [H*(1 = F,/2Ro)* + 24f/g']"%, (2.5)

where F, is the internal Froude number given by
F, = V,*/g’'H, and Ro is the Rossby number.

The functions G(i) and K(y) are determined now
[as a function of A;(y)] by substitution of the
upstream condition into (2.2) and (2.1):

G(p) = V?/2 + g'[h(d) — Hy], (2.6)
K@) = dGW)/dy = f/h(). 2.7)
Inserting (2.7) and (2.6) back into (2.1) and (2.2)

yields
Vu (Ve/h) + f = hf/h(¥),
W(V/h)? + g'h = V¥ /2 + g’ h(¥).
In terms of the non-dimensional variables

l‘l’*=ll’/(2V()I{0b), x* = x/b , )’*=y/b
h = h/Ho ’ v* = U/Vo, u* = u/VO ’ (2.10)
V= bV,

Vohidx

(2.8)
(2.9)
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the governing equations are:
4RoV - (Vy*/h*) + 1

= h*[(1 — F,/2Ro)* + 2¢*F,/Ro]""2, (2.11)
Fi[2(Vy*/h*)? — 2] + h*
= [(1 = Fi/2Ro)* + 2¢*F,;/Ro]"2. (2.12)

The boundary conditions are as follows:

=0

* = () :

¥* = 15(1 + x*) — (Fy/8Ro)[1 — (x*)*]:

v =1 :
=1
8y*/9y* = 0

It is further assumed that the transport function and
the layer depth possess the expansions

‘p* = lII(O) + Fll’l(l) + .. _]

(2.15)
h* = KO + Fh® + . ..

where F, is small. The expansion is uniformly valid
if Y@ is larger than the perturbation Fy/? in the
whole field. We consider Ro to be a fixed parameter
which is not small: (F,/Ro) < 1. By substitution of
(2.15) into (2.13) and (2.12) and equating like powers
of F, one obtains the zeroth order equations

VH©® =0, A9 =1, (2.16)
and the first-order equations
hY = 15 — 2(V®)?2 + (Y@ — 15)/Ro, (2.17)
V2 = (1/4Ro)[Y2 + 2(Vy®)?]
- 2Vy@-V[(Vy®)2]. (2.18)

The boundary conditions are obtained by inserting
(2.15) into (2.14) and equating like powers of F,.
One finds that the boundary conditions for ¢ are
the same as (2.14) except at the outlet where
= (1 + x*)/2. ¥ vanishes on all boundaries except
at the mouth where ¢ = [(x*)? — 1]/8Ro. At
y* — o, the boundary condition for Y is 9P/
ay* = 0.

b. The zeroth-order and first-order solutions

The solution of (2.16) is equivalent to the
homogeneous solution of the single layer model
considered by N and is given in the appendix by
(A1). The solution is symmetrical with respect to
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The last two equations can be combined to the
single equation

V- (Vy*/h*) = (F,/4Ro)[Y2 — 2(Vi™*/h¥)?]

x {(1 — 2F,/Ro)? + 2¢*F;/Ro]" 2. (2.13)

x* = —c, 0<y* <o)
—-c < x* < —1, y¢ =0
-l=sx*=s1 , y* =0 L (2.14)
l<x*<c , y =0 |

x*=c , 0=sy*<w
—c=x*=sc¢ , y* — o

x* and there is no deflection to zeroth order. Far
downstream (y* — ) the solution reduces to

11,11_{90 PO = (x* + ¢)/2c. (2.19)

We shall consider now the first-order problem. It

is easy to show that if ¢ > 1 the zeroth-order

solution (A1) reduces to a form which satisfies the

condition V{@ - V[V{/¥]> = 0 everywhere. Thus, for

a very large widening (2.18) can be approximated by

VA = (1/4R0)[% + 2AVYO)Y],

c> 1. (2.20)

The solution of (2.20) is found by guessing and by
noting the similarity of the problem to the step down
case considered by N. The detailed solution is
presented in the Appendix. For nonseparating flows
the complete solution is

¥* = @ + (F/Ro}{ey — /4
+ (PO)2/4 + P, + [(x*)2 — c2]/16}, (2.21)

where Y@ is given by (A1), ¢ by (A9) and s, by
(A6). The subscript bc denotes that the variable in
reference is associated with subcritical conditions.
Note that the solution is reducible to the non-
rotating case upon substitution of Ro — «. A typical
non-separating solution is given in Fig. 2A which
shows that the center streamline (* = 0.5) is shifted
to the right from its upstream position. This result
could be expected since as the flow spreads the
velocity decreases and the Bernoulli principle
implies that an equivalent step down of as much
as V2/2g'H, is actually created by the flow.

To investigate the possibility of separation one
examines the velocity field at y* — «. This field is
found from (2.21), (2.19) and (2.17) to be

»* = Lim (__
oo \ ¥ Ox*

2 6111*) _ 2[ (1 — F,/2R0)/2¢ + Fy(x* + ¢)/8Roc? + F,x*/8Ro

1 + Fi(1 + x*/cRo)/2 } ’ (2.22)
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Fi1G. 2. Streamlines for an outflow from a channel with
uniform velocity distribution. The ratio between the Rossby
number to the internal Froude number is higher than the
critical in (A), and smaller in (B).

where the coefficient 2 on the left-hand side results
from the definition of the nondimensional numbers.
Note that since F,;/Ro is small the asymptotic
(y* — =) depth of the upper layer [1 + F,(1 + x*/
cRo)/2] is always positive and larger than zero.
One observes that for negative x* and a relatively
small Ro/F, the velocity may become negative near
the left bank. It has been shown by N, however, that
such a situation is impossible. Thus, separation
occurs and the critical relationship is given by the
condition that the velocity vanishes at the left bank.
This condition gives

(Ro/F,), = ¢*/4, (2.23)

where the subscript ¢ denotes that the variable in
reference is associated with critical conditions.
We shall now consider the first-order solution
under supercritical conditions. As in the single layer
case the problem becomes poorly defined when
(Ro/F,) < ¢%/4. In a similar fashion to that used
previously this difficulty is resolved by assuming
that the flow separates from the left bank and that
the velocity vanishes at the asymptotic (y* — «)
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separation line. Due to the separation ¢* does not
vanish at the left bank but at the separation line;
thus the solution under supercritical conditions is

‘J}* ~ lll(O) + (FI/RO)[yI(l}) — ¢(0)/4 + (¢(0))2/j

I
+ P + (2 = )(x* + §)/16], (2.24)
I

where & is the unknown location at which the
asymptotic (y* — ®) particular solution (II) van-
ishes; Y@, Y and ¢, are given in the appendix by
(A1), (A9) and (A13), respectively. The subscript
sc indicates that the variable in reference is associ-
ated with supercritical conditions. Note that as in the
homogeneous layer case the location at which the
asymptotic particular solution (II) [equivalent to
P(x*) used by N] vanishes (8) does not coincide with
the location at which the total asymptotic (y* — )
solution vanishes (d). The terms 8 and d are found
by equating t[;*|,,,_,m and v*|y¢_m evaluated from
(2.24) to zero. This yields a pair of algebraic equa-
tions with two solutions; the physically relevant
solution is

d ~ ¢ — 4Ro/F,)"2, (2.25)
8 ~ —c + 8(Ro/F))"> — 8Ro/Fyc.  (2.26)

Thus, the asymptotic (y* — ) separated current
width is 4(Ro/F;)'? which is independent of c. A
typical separating solution is shown in Fig. 2B. In
most of the field the perturbation (F/Ro)[I + i,
+ II] is smaller than the basic state (%), but at the
separation line the two have the same value. For
such cases the perturbation theory is not applicable
a priori and a further investigation is required.

It is clear that whether there is separation or
not, the expanded solution (2.24) is valid in the
vicinity of the outlet since the perturbation there
is small. If ¢ > 1 and (RoF,~%)¥2 > 1, the basin and
the long-shore current are very wide in comparison
to the channel; the final flow speed is very small
[O(F,Ro71)¥?)] and so the nonlinear terms in (2.20)
can be neglected downstream. Under such condi-
tions the equation controlling the flow downstream is

V3* = F,/8Ro, h* =1+ O(F,). (2.27)

The above equation has a solution of ¥* which is
identical to (2.24) with I = 0. It is easily verified
that when the current width is small in comparison
to the basin width then

LimI =0,
YH—>00

which shows that for ¢ > 4(RoF,”)¥? > 1, Eq.
(2.24) yields the proper solution both near the outlet
and far downstream.

In the exterior (beyond the separation line) the
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upper layer is assumed to have the same depth as
the depth of the interior at the separation line. The
solution to the exterior is equivalent to the solution
given by N for the single layer model, where A the
Rossby deformation radius is replaced by A’ the
internal deformation radius. Thus, far downstream
the exterior is stagnant. If the width of the separated
current is comparable to the basin width the entire
exterior domain is motionless. If the width of the
separated current is much smaller than the basin
width the exterior domain will still be stagnant far
downstream but will have a cyclonic or anticyclonic
circulation near the outlet.

The solution presented in this section also
describes motions in a layer with a flat bottom and
a free surface in two types of cases: 1) a deep
inert layer of density (p — Ap) overlying this layer,

“and 2) a single layer system where the internal
Froude number (F,) is replaced by F.

It was mentioned earlier that the solution allows
for motions which are far from a state of geostrophic
balance. The quasi-geostrophic solution may be
obtained from (2.12) and (2.13) by considering
Ro < 1 and constraining F, =< Ro? as required by
the quasi-geostrophic theory. The quasi-geostrophic
theory neglects terms of O(Ro)?* and of O(F,);
therefore, (2.12) and (2.11) reduce to

h* = [(1 - F,/2 Ro)* + 2y*F,/Ro]'",
V2 = 0.

The latter equation subject to its boundary condi-
tions has the solution given by (A1) which does not
allow any deflection.

It should be noted, as in the single layer model,
that it is difficult to find out analytically whether
the functions which constitute the total solution
produce a continuous separation line which inter-
sects with the proper boundary (see N Section 3b).
Numerical calculations of §* for the range 10 < ¢
=< |8 and 0.015 < F,/Ro < 0.10 showed a con-
tinuous separation line which intersects with the
proper boundary, but we cannot show that this will
be the case for any range of parameters. This
discussion applies qualitatively also to the ‘‘short
strait’” problem which is considered below.

3. Outflow from a short strait

We consider the model shown in Fig. 1B. The
problem is to determine the behavior of the upper
layer as it is compressed and accelerated upon
entering the strait, reaching a geostrophic balance
and then spreading as it enters the basin. The
adjustment in the basin is different from that
considered in Fig. 1A due to the non-uniform flow
which is established upstream from the outlet. The
strait is assumed to be relatively short so that
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friction can be neglected along it but at the same
time it is assumed to be long enough (O(bRo)) so that
the flow near the outlet is in geostrophic balance.
It is also assumed that the depth of the layer from
which the lighter fluid is advected into the strait is
very large in comparison to the depth of the layer
in which the adjustment is taking place. This is
supported by measurements given by Defant (1961)
for the Straits of Gibraltar.

Far upstream the velocities are assumed to be very
small. Substitution of this boundary condition into
(2.1) and (2.2) yields

K@) = f/H;, G@) = g, (3.1)

where H; is the depth of the layer upstream and
m; the positive upstream surface displacement. For
(h/H;) < 1 the potential vorticity equation in the
strait and basin reduces to

Vi (Vg/h) = ~f. (3.2)

Hence, the assumption k& < H; requires that K(y)
= 0 and G(y) is thus a constant everywhere. These
values of K(y) and G(y») have been used for a
different case by Whitehead et al. (1974) who
studied the dynamics of the lower layer in sea
straits. The upstream surface displacement m; can
be expressed in terms of the average velocity V, at
the strait; therefore, G() = V,%/2. In terms of the
nondimensional variables defined in (2.10) the
potential vorticity equation and the Bernoulli
integral are

V-(Vy*/h*) = —1/4Ro, (3.3)

4F (VY*/h*)? + 2(h* ~ 1) = F,. 3.9

These equations appear simpler than (2.11) and (2.12)
found for the ‘‘long strait’’ (uniform flow) case.

We shall now evaluate the boundary conditions
at the outlet. In the strait, near the outlet, the
velocity is assumed to be independent of y. There-
fore, (3.3) yields the geostrophic solution with zero
absolute vorticity v = V, — fx. This enables one
to evaluate ¢ from

¢=ﬁ0@<m

Hm+erU%ﬁ%M®(ﬁ)

where the second integral represents the interface
displacement £(x). In nondimensional variables the
latter takes the form

gt = (1 + x*)/2 + (F, — D[(x*)* — 1]/8Ro
- [(x*)® + 1]F,/32Ro0?
+ [(x*)* — 1]F,/128Ro?, (3.6)

where the Rossby number is larger than 0.5 so
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F1G. 3. Streamlines for a non-separating (A) and separating (B)
outflow from a short strait.

that the flow at the strait touches both banks
[v(x*) > 0]. Note that due to this limitation, the
quasi-geostrophic theory probably cannot be applied
to this case.

Eq. (3.6) gives the boundary conditions for ¥* at
the outlet to the basin (—1 < x* < 1;y* = 0). Other
basin boundary conditions are the same as those
given by (2.14). It is further assumed that ¢* and
h* possess the expansions

lll* p— ‘b(o) + Fld’(l) + ...
h* = K9 + F,AY + .. } ’
where F, is small and Ro is fixed and is not neces-
sarily small. By substitution of (3.7) into (3.3) and

(3.4) and equating like powers of F, one obtains
the zeroth-order equations

V3y® = —1/4Ro,
and the first-order equations

h(l) — ]/2 —_ Z(V\p(O))z
V2 = —(1/8Ro) + (1/2Ro)(Vi®)? } - 3.9
—_ ZVV[(Vl[J(o))z]

We will see shortly that @ is a more complicated

(3.7)

h® =1, (3.8)
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function of x* and y* than previously, so that (3.9)
cannot be solved easily. However, it will be shown
that separation can be understood from (3.8) alone.

The boundary conditions for the zeroth-order
problem are obtained by inserting (3.7) into (3.6)
and (2.14) and collecting terms of the same order.
One finds that the boundary conditions for ¢‘© are
the same as (2.14) except at the outlet where

@ = (1 + x%)/2 + [1 — (x*)?]/8Ro. (3.10)

The detailed solution of (3.8) subject to its boundary
conditions is presented in the Appendix. For non-
separating flows the complete solution is

W* = % + W + P — [(x*)? — c?]/8Ro,  (3.11)

where 4%, &% and {s,, are given by (A1), (A14) and
(A17), respectively. A typical non-separating flow
is shown in Fig. 3A where a deflection to the left
is noted. The deflection results from the initial shear
which is produced by the sill.

In a similar fashion to the uniform flow case one
finds that separation occurs when Ro < ¢%/2 and
that the location of the asymptotic (y* — ) separa-
tion line is

d = (8Ro)* — c. (3.12)

Hence, the nondimensional width of the separated
current at y* — o is (8Ro)/2,

Under supercritical conditions the total solution is
given by

WO = Wil + 9+ B — [(* + c)/8Ro]
x [x* — 42R0)" + ¢ + 4Ro/c], (3.13)

where %, ¥% and §s,, are given by (A1), (A14) and
(A18), respectively. It should be noted that the
zeroth-order approximation is valid as long as

Ro =1, (F,/Ro)<1, (F,/32R0®») <1
and
(F,/128Ro0%) < 1.

An example of separating outflow from a short strait
is shown in Fig. 3B. The dynamical behavior of the
outer region (the domain beyond the separation line)
is identical to the exterior motion discussed in
Section 2.

4. Laboratory experiments

Two experimental systems (shown in Fig. 4) were
used to test the theory. Apparatus (A) was used
to test a separated outflow from a channel with

“uniform velocity distribution and apparatus (B) to

test a separated outflow from a short strait. All
the mechanical, dynamical and observational
details and the design considerations given by N,
except those which are discussed below, apply also
to the two-layer apparatus.

Before each experiment the upper layer was
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F1G. 4. Schematic diagram of the experimental apparatus. Apparatus (A) was used to test an outflow from a channel with uniform
velocity distribution and (B) to test an outflow from a short strait. All dimensions are given in centimeters.

formed by pouring, very slowly, fresh water on top
of a salt water layer. The salt concentration in
the lower layer of apparatus (A) was 1.5% and 3.3%
in apparatus (B). The flow in the upper layer was
laminar so that salt diffusion during each experiment
(1.5 h) was negligible. The pure dye was slightly
heavier than the fresh water but lighter than the
salty water. As judged from dye variation the
interface remained relatively sharp and did not
extend for more than 1-2 mm.

Due to the relatively heavy load of the two-layer
apparatus the short-term stability of the turntable
was worse than with the one-layer apparatus, but
the fluctuations did not exceed 0.3%. The long-term
stability was better than 19%. The experiments were
performed at night in order to avoid power varia-
tions which, with a heavy load on the table, could
cause rotational variations higher than thosz men-
tioned above. A typical rotation rate for the two-
layer experiment was () = 2.2 rad s™!. A potentially
serious shortcoming of apparatus (B) was that the
step effect upstream from the basin was produced
by a double rigid sill (seen downstream from the
filter in Fig. 4B) rather than by a lower layer as the
theory assumed (see Fig. 1B).

The results of the experiments with apparatus

(A) and (B) are shown in Fig. 5; the outflows deflect
to the right and left respectively, as the theory
predicts (Figs. 2B and 3B). Photographs (c¢) and (d) in
Fig. 5 show a pattern which is somewhat less
smooth than the others. This may be a result of
the relatively high Reynolds number of the flow
(about 1100) which could cause the current to be
in a transition from laminar to turbulent flow.
Another possibility for flow instability would be
baroclinic instability of the inclined interface which
supports the velocity differences between the layers.
Theory shows (Stern, 1974) that baroclinic instability
can occur as long as the length scale is not much
smaller than the internal Rossby deformation
radius A’ in both layers. In the experiment L,
~10cm, A\, =5cmand L, = 10 cm, A/ = 10 cm
where the subscript 4 denotes ‘‘upper layer” and
the subscript / denotes ‘‘lower layer’’. Therefore,
baroclinic instability appears to be a possibility.
Inertial instability was unlikely in the experiment
sinfe the anti-cyclonic relative vorticity was dis-
tinctly less than 2().

Apparatus (B) was originally designed to test
deflections resulting from a very large step up (which
was a basic assumption in the short strait theory).
However, preliminary experiments with a step of
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direction, one cannot justify whether these deflec-
tions result from the adjustment process studied
here, from pre-existing currents or from the particular
geometry of the boundaries. For example, observa-
tions have shown that the outflow from the Gibraltar
Straits into the Alboran Sea (the western part of the
Mediterranean Sea) deflects to the left (Lanoix,
1974) as the study for a short strait predicts (see
Figs. 6a, Sc, 5d and 3B), but it might very well be
that the deflection is a result of the angle btetween
the strait and the basin as well as shear in the
strait. The deflections of the outflows from the
Alboran Sea, the Nile and the Dardanelles into the
Mediterranean Sea are to the right (Sverdrup ez al.,
1942), as the study for an outflow from a channel
without vorticity predicts® (see Figs. 6b, 5a, Sb
and 2). Therefore, the latter may explain the
counterclockwise circulation observed in the central
Mediterranean Sea. However, since the study does
not include preexisting longshore currents, it is
difficult to justify whether, in nature, the outflow
contributes to the counterclockwise circulation or
the circulation is causing the deflection. Cbserva-
tions of ice concentration in the Arctic Ocean
show that the amount of ice on the right side of the
outflow from the Bering Strait into the Arctic Ocean
(Oceanographic Atlas of the Polar Seas, 1957) is
less than in the center and the left part. This
suggests that the outflow from the Bering Strait into
the Arctic Ocean belongs to the same category
as the Nile and the Dardanelles. However, we
face here the same difficulty which was mentioned
above; that is, one cannot justify whether the de-
flection to the right is a result of the adjustment
process studied here or a result of the counterclock-
wise circulation in the Arctic Ocean.

6. Summary

In a previous study (N) it has been shown that the
direction at which the outflow is deflected depends
on the bottom elevation in the field and on the initial
conditions in the channel. In contrast, the theory
presented in this paper illustrates that in the two-
layer case the direction at which the outflow is
deflected depends only on the initial conditions in
the channel.

The characteristics of the adjustment process
are as follows:

1) A frictionless outflow from a channel with
uniform flow deflects to the right (in the Northern
Hemisphere). The mathematical solution shows that
rotational effects are important whenever the ratio

% Far from the Gibraltar Straits the outflow from the Atlantic
Ocean is expected to behave as an outflow from a channel with
uniform flow since its initial shear has been destroyed by
frictional effects while reaching its **far’’ position.
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between the internal Froude number to the Rossby
number is not negligible while, as in the homogeneous
layer case (N), the ratio between the channel width
to the Rossby deformation radius may be entirely
negligible. There is a critical ratio between the
Rossby number and the internal Froude number
below which the current separates from the left basin
bank, forms a long-shore current, and far down-
stream produces a stagnant region beyond the
separation line. The critical ratio is a function of
the relative widening of the channel.

2) An outflow from a channel with initial vorticity
approximately equal to the Coriolis parameter
deflects to the left. Under such conditions rotation
is important whenever the inverse of the Rossby
number is not entirely negligible. If the Rossby
number is below a certain value, the flow separates
from the right bank.

3) The quasi-geostrophic theory fails to describe
the motions of the two cases studied here. For
the uniform flow case it yields a symmetrical
solution without a deflection and it probably cannot
be applied to the non-uniform flow case since for
the latter the Rossby number cannot assume values
of less than a half.

The direction of deflection for the two cases was
tested qualitatively in the laboratory on a rotating
table and was found to agree with the theoretical
predictions. It is suggested that the defiection to the
left of the outflow from the Gibraltar Straits (into
the Mediterranean Sea) may be explained by the
adjustment process considered in this study.

APPENDIX
The Detailed Solution

a. Outflow from a channel with uniform flow:
zeroth-order and first order solutions

As mentioned earlier the solution of (2.16) subject
to its boundary conditions is identical to the
homogeneous solution for the single layer model
given by N in the form

ca

PO =15 + (— + L) tan“(

a+ m7/2 )
? 2w

B

_f(ca 1 @ — 7/ 2
(7 277) tan ( B )
N E ln[ﬁz + (a — 71/2c)2]
a? B2+ (o + 7/2c)?

+ O(m24c?), (A1)
where
a = sin(wx*/2c) cosh(my*/2c),
B = cos(mx*/2c) sinh(mry*/2c). (A2)
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F1G. 6b. Surface currents (solid arrows) and currents at inter-
mediate depths (dashed arrows) in the central Mediterranean
Sea (after Nielsen, reproduced from Sverdrup et al., 1942).

We define the first-order solution such that
= YP/Ro + ¢ where the first term on the right
hand side represents the homogeneous solution and
the second is the particular solution. By considering
the similarity of the problem to the step down case
considered by N and guessing, one finds

PP = (Y)2/4Ro + [(x*)? — c%]/16Ro
+ Pne/4R0, (A3)

where §? is given by (A1) and Yne is to be found. The
function s, satisfies the conditions

Poe(x*,0) + (1/16)[(x*)2 — ¢®] = 0, (A4

lI‘;i_{nw J’bc =0, VzJ’bc = 0. (A5)
=0

P =0 1 —c

P = [z - 1/16:  —1

P =0 : 1
=0

aytp/dy* = 0 —c

The function ¢ is found by the Schwartz-
Christoffel transformation ¢ = a + i = sin[#r(x*
+ iy*)/2c] (where a and B are given by (A2)), and
by the Fourier integral
1 [ BE(p)de
1) — s E = (D) ,0 .
= | et Ee) = a0
(A8)

Substitution of the transformed boundary conditions
into the integral gives

DB [T @/ = e
‘Il;l 167 J_"/gc B2 + (a - ¢)2

where we have used the approximation sina =~ « for
small «. This integral yields (see for example
Gradshteyn and Ryzhik, 1968)

ﬁﬂl [[«32+(oz—7r/2c)2
4 B+ (a + 71-/20)2]

+ O(1/24¢?),

up ~
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Under such circumstances the function s, cancels
the contribution of [(x*)? — ¢?]/16 along the line
y* = 0; it can be calculated by using the Fourier
series representation:

Py = i A, exp(—nmy*/2c) sin[am(x* + ¢)/2c].
n=1

The coefficients A, are determined by considering

An=~1/0) | ey~ /18]

X sin[nmw(x* + ¢)/2c]dx*,
which gives

- ® (cosnm — 1
ll’bc = —¢? "E:l (—n3173 )

— 3 £ +
X exp( i ) Sinmr(x ) . (A6)
2c 2¢

We shall now calculate the homogeneous part of
the first-order solution ¢’. To simplify the boundary
conditions, one may add —¢®/4Ro to the right-hand
side of (A3); the latter cancels the contribution of
¥®)2/4Ro along the solid boundaries. The revised
P obeys nonhomogeneous boundary conditions at
the mouth. The complete boundary conditions for

3 are as follows:

x*=—c, Osy*=sow»
<x*< -1, y¥*=0
sx*=<1 , y*=20 L (A7)
<x*<c¢ , y¥=20
x¥*=c¢c , 0Osy*<ow
sx*sc , y¥ — oo

+_c£+ 1 [1+4c2(,82—a2)]

4m® 16w ?

X [tan“(————a — W/ZC)

B

- tan—l(i"’LT”/zf.)] . (A9

Thus, we have calculated all the functions which
constitute the solution under subcritical conditions.
The total solution is given by

¥ = ¢ + Fi[$i/Ro + ¢;* — ¢/?/4Ro],  (A10)

where @ is given by (Al), ¢’ by (A9) and ¥
by (A3).
Under supercritical conditions the total solution is

still given by (A10); however, §V is not given by
(A3) but by
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U = (HOP/4Ro

+ (x* - c)(x* + 8)/16Ro + y,./Ro, (All)

where 8 is given by (2.26) and ¥ is to be found.
U, satisfies (AS) and

Pee(x*,0) + (1/16)(x* — c)(x* + 8) = 0. (Al2)

By using the techniques described by N for
calculating a supercritical flow with a step down
one finds

. nm
, Sin—
~sc =y c + -8
Y Uy c(c )ngl i
— % *
X exp( il ) sinmr(x ) , (Al13)
c 4c

where ), is given by (A6) and & by (2.26). The
functions evaluated in this section enable one to
calculate the total solution for both separating and
non-separating flows.

b. Outflow from a short strait

In this section we shall evaluate the functions
which constitute the zeroth-order approximation.
As mentioned in the text the first-order solution for
this case is beyond the scope of this study.

The total zeroth-order solution consists of a
homogeneous and a particular solution and we shall
construct first the homogeneous solution. To simplify
the solution ¢4, it is divided into two parts
= % + Pi%, where % satisfies the first term of
(3.10) [therefore, its solution is given by (A1)] and

O satisfies the second. The Schwartz-Christoffel
transformation (mentioned in Section A) and the
Fourier integral yield

B

) — —afc? [32 + (@ — 17/20)2]
Wi = Rom M F ¥ @+ w207 | 2mRo
+ 1 [tan“(a + 1r/2c) _ an“(a - 77/20)}
8Ro B B

y [ 1, 4B~ o)
w

] + O(7/24¢%). (Al14)

The general form of the total non-separating
solution is given by (3.11). Since the particular
solution has the form

U@ = —[(x*)2 — c?]/8Ro + Pp(x*,y*), (AlS5)
Ype should satisfy
Une(x*,0) — [(x*)2 — c?]/8Ro = 0  (A16)

and (AS5).
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Using the technique described by N for a step up
under subcritical conditions one finds

- > (cosnm — 1 —nmy*
. = 2¢*/Ro (___) ex (___)
U, (2c%/ )E::l s P 2
k
» sin[mr(x + ¢)
2¢

:| . (A17)

Under supercritical conditions the particular solu-
tion is modified and the total solution is given by
(3.13) rather than (3.11). The function . is found
by applying the techniques discussed by N for a step
up under supercritical conditions, i.e.,

. nmw
2c ad SmT —nmy*
~sc =9 c T 6 — €
o = e~ e 6= ) T —— exp |
%
X Sin[w} , (AI8)

where . is given by (Al17) and & = 4(2Ro)'?
— ¢ — 4Ro/c.
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