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The translation of isolated cold eddies on a sloping bottom
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Abstract—A two-layer analytical model is considered to examine the dynamics of cold isolated
patches on the ocean floor, Such patches have been observed in the North Atlantic Ocean and are
characterized by a bounding interface that intersects the bottom along a closed curve. They
correspond, therefore, to isolated anticyclonic eddies with a lens-like cross section. The mode!
incorporates steady movements resulting from the swirl velocity within the eddy and =
topographically-induced translation. )

The movements are assumed to be frictionless and nondiffusive but are not restricted o be quasi- *
geostrophic in the sense that the Rossby number is not necessarily small, For steady motions;
analytical solutions are obtained using the full equations of motion in a coordinate system moving,
with the eddy itself,

A uniformly sloping bottom causes a steady translation at 90° to the right of the downhill direc-
tion. Thus, the model predicts that an anticy¢lonic eddy on the ocean floor will migrate along lines of
constant depth. Surprisingly, the predicted translation speed depends only on the pravitational
acceleration, the density difference between the layers, the Coriolis parameter, and the bottom slope.
It is independent of the intensity, size, and depth of the eddy.

For the range of parameters typical for the deep ocean, the predicted translation speed is 5 to
10 cm s~%, It is estimated that isolated eddies on the ocean floor may be able to carry temperature
anomalies for a few thousand kilometers away from their origin.

1. INTRODUCTION

IsoLATED baroclinic eddies are found in many parts of the ocean. In the upper ocean and at
mid-depth they result from instabilities of currents and from various outflows such as the
Mediterranean (McDowerL and Rosssy, 1978; Nor, 1982) and the Amazon (RyYTHER,
Menzer and Corwin, 1967; Nor, 1981a), So far, there have been few observations of
isolated eddies on the deep-ocean floor, but recently Armi and D’AsAro (1980) identified
isolated cold patches on the abyssal plane, and in April 1977 {(during POLYMODE),
a cold isolated ‘blob’ was observed on the bottom near 70°W and 25°N (HBBESMEYER,
personal communication).

In a similar fashion to upper-ocean anticyclonic eddies, the blobs are characterized by a
fens-like cross section corresponding to an interface that intersects the bottom along a closed
curve. They have various length and temperature scales; the patches identified by Armt and
I’Asaro (1980) had a temperature anomaly of ~0.05°C, a depth of ~40 m, and a length of
~20 km. The feature identified during POLYMODE was considerably larger; it had a depth
of ~300m, a length of ~200km, and a temperature anomaly of ~0.4°C,

Such blobs probably play an important part in determining the mixing and distribution of
heat in the deep ocean, so there is an interest in examining their dynamical behavior. The
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question of their movement and migration on the ocean floor is of particular importance
because of its relevance to the transport of properties and energy within the deep ocean.

In the upper ocean, mesoscale eddies translate due to the variation of the Coriolis
parameter with latitude (see e.g., FLIERL, 1977, 1979b; FLERL e¢f al., 1980; Miep and
LINDEMANN, 1979; McWiLLiAMS and FLIERL, [979; WARREN, 1967; Nor, 1981b). In view of
this and the fact that a sloping bottom is usually thought of as being equivalent to the varia-
tion of the Coriolis parameter with latitude in the upper ocean, it is expected that isolated cold
eddies will translate in most of the deep ocean. To investigate the possibility of such move-
ments, we shall consider a two-layer model of an isolated anticyclonic eddy on a sloping
bottom.

Our aim is to examine the general behavior of isolated cold eddies on an inclined floor; no
atternpt will be made to produce detailed models for particular sets of observations such as
those of EBpESMEYER (personal communication) or ArMi and D’Asaro (198Q). We shall focus
our attention on the possible translatory movements and show that, as expected, a sloping
bottom causes a translation of the whole eddy similarly to the effect of B in the upper ocean.
We shall see, however, that although both processes are associated with translatory move-
ments, the magnitude of the topographically-induced movement and its various properties are
entirely different from those associated with f-induced movement inl the vpper ocean. It will be
shown that the topographically-induced translation is relatively fast and independent of the
intensity, size, depth, and volume of the eddy. _

The governing equations are considered in a coordinate system moving with the eddy itself,
because it turns out that with such a coordinate system the translation speed can be readily
calculated by integrating the governing equations over the whole eddy. The integrated equa-
tions relate the translation of the eddy to the slope of the bottom and to the density difference
between the layers.

This paper contains the formulation of the problem (Section 2) and its solution (Section 3).
Section 4 contains the analysis of the results and their limitations, and Section 5 is a
SUmmary.

2. FORMULATION

As an idealized formulation of the problem, consider the structure shown in Fig. 1. The
cold, isolated eddy has an homogeneous density {p + Ap) and depth A(x, ). The infinitely
deep fluid above the eddy has a density (p) and is taken to be at rest.

Let us suppose now that the eddy has been suddenly placed on the sloping bottom. Shortly
afterwards, the gravitational force will tend to cause sliding of the whole eddy in the downhill
direction. Such movement, however, will be modified by the Coriolis force, which will tend to
deflect the whole eddy toward the right until a balance of forces is reached. It is this final
balanced state we shall examine, To do so, we shall consider a coordinate system moving with
the eddy, which eliminates the time dependency of a steadily translating eddy.

Before considering the equations of motion for such a moving coordinate systent, it is
useful to examine some general properties of cold anticyclonic eddies using a stationary frame
of references. In a fixed coordinates system, the governing equations for a frictionless
Boussinesq fluid are

U,

ot

1
+u, - Vyu, + fkxu, +—Vup=0 (2.1)
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TOP VIEW

Fig. 1. Schematic diagram of the model under study. The isolated anticyclonic eddy is placed ona

sloping bottom (§ = tan &; S < 1); the upper layer, whose density p is slightly lighter than that of the

eddy (p + Ap), is infinitely deep. Dashed lines denote lines of equal depth, The eddy is translating
steadily at a speed C, along the lines of constant depth.

oh
——a—t—' + Vg - (hus) = (. (2.2)

Here, the subscript s denotes that the variable in question is considered in a stationary frame
of references, u, is the horizontal velocity vector, p the density, p the deviation of the pressure
from its motioniess hydrostatic value, k a unit vector in the z direction, f the Coriolis
parameter (taken to be constant), V the horizontal del-operator, and # is the eddy depth. The
% and ) axes are directed at 90 and 180° to the left of the downhill direction, and the origin is
(%5, ¥o)- It has been assumed that all motions are hydrostatic so that the horizontal velocity
components are independent of depth and (2.1) and (2.2) are equivalent to the so-called
shallow-water equations.

If there is no slope to the bottom the eddy is stationary and 9/d¢ = 0. By writing (2.1) and
(2.2) {with 8/¢ = Q) in polar coordinates, examining the structure of the corresponding poten-
tial vorticity equation, and considering the condition that at the outer streamline of the eddy
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the depth vanishes, one can easily show that the system always has radially symmetric solu-
tions corresponding to purely circular motion. This means that on an JSplane and a flat bottom
an jsolated anticyclonic eddy free from any external forcing is always circular, Tt will become
clear later that, in our problem, the presence of translation does not alter the shape of the
eddy, so the translating eddies will also be circular.

With the aid of this general information about the shape of the eddy we shall examine the
problem in the moving coordinate system. The origin of the system is at the center of the
eddy, the x axis is directed at 90° to the left of the downhill direction, the y axis is pointed
uphill, and the system rotates uniformly with an angular velocity Lf about the vertical axis
(Fig. 1). It is assumed that the translation is steady and that the shape of the eddy is per-
manent and does not change in time so that in our moving coordinate system the motion
appears to be steady. The assumption of permanent form and structuare is plausible, but it is
not a priori obvious under what conditions it is valid and adequate. It will be demonstrated,
however, that the translation does not affect the structure of the eddy in any way, so the shape
is permanent, and the assumption is adequate for all topographically-induced translations,

The relevant governing equations for the moving coordinate system are obtained by apply-
ing the transformations £ »>x+ C.f and j -y to (2.1) and (2.2). For the conditions
mentioned above, the transformed equations are

ou ou ¥ op
Wt p——fl=——— 2.3
ox oy p ox
oy or 1 9p
Hr—+ v ——+fl+ C)=——— 2.4
ox oy p ay
0 9
— () + — () =0, (2.5)
ox dy

where u and v are the horizontal velocity components in the x and y direction. Note that the
term fC, on the left-hand side of (2.4) results from the fact that in a moving coordinate system
there is an apparent force acting on all fluid parcels. As mentioned earlier, we shall focus our
attention on eddies embedded in an infinitely deep fluid. Under such conditions, translatory
movement of the eddy has no effect on the upper. layer, resulting from the fact that in a
moving coordinates system the upper layer behaves as if it were flowing over a bump whose
height is A(x, y). Thus the disturbances are proportional to (h/H), where H - oo (see e.g.,
InGersoLL, 1969; Nor, 1982). Hence, the disturbances vanish and the eddy travels without
affecting the fluid above. The situation would have been quite different had the upper layer not
been infinitely deep, With a finite upper layer there might be important interactions between
the eddy and its surroundings so that the subsequent analysis may not be applicable
(Section 4),

Under the conditions mentioned above, the deviation of the hydrostatic pressure from the
hydrostatic pressure associated with a state of rest (i.e,, a ‘no blob’ state) is

P =glplh(x,y) + Sy — z, (2.6)

where S, the slope of the bottom, must be small so that the hydrostatic assumption is not
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viclated. Substitution of (2.6) into (2.3) and (2.4} gives

ou du p oh @
U—+ ¥V —firm= —g — .
ox oy g 0x
v v g's oh
u——+v——+f(u+C +— ) -g - (2.8)
dx ay I oy’

where g’ is the ‘reduced gravity’ defined by g' = (Ap/p)g.
The set (2.7) and (2.8) is subject to the following boundary conditions:

h=0:¢{x,00 =0 , 2.9)
(@l +vi) Vo =0; 6(x,0) =0, (2.10)

where ¢(x, y}= 0 denotes the outer edge of the eddy. Condition (2.9) states that # = O alohg a
curve not known in advance (¢) and (2.10) requires that the edge be a streamline. The condi-

_ tions correspond to the fact that the location and shape of the outer edge of the eddy are not

known @ priori but must be determined as part of the problem.

3. SOLUTION

To obtain the solution to the problem, (2.8) is integrated over the entire eddy:

fff ( ta—;+v—)dxdydz +ffj Judxdydz
+J:”; (Cx + %f-)fdxdydz :—g’ffj; —zgdxdydz,

where I denotes the volume of the vortex, As u and v are independent of z, the integrated

balance reduces to
o oy
ff (huu + hv-—) dx dy +jf Juhdxdy
A ox ey A

+f£ (cx +g;—S)ﬂ:dxdy=:§Lf£aiy(hz)dXdya &R

where A denotes the projection of the outer surface of the eddy on the x, y plane. Using (2.5)
and Stokes’ theorem, (3.1} can be expressed as

—thﬁ dx +£huv dy +f£fuk dx dy +f£ (Cx +~g~}§) Jh dxdyzg?’f{] R dx, (3.2)

where ¢ denotes the outer edge of the eddy (2.9). Because & = 0 along ¢, the line integrals over
the nonlinear terms and the right-hand side of (3.2) vanish identically., With the aid of the
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transport function

o o¥
——=—ph; ——=1h, (3.3)
oy ox

the resulting equation can be written in the form

~f£%dxdy+j£(cx+§'}§)thny, 3.4)

which, by using Stokes’ theorem again gives

L\de+f£ (cx + g}S

As W = constant along ¢ (sce 2.10), the first integral on the left-hand side also vanishes.

)hdxdyzo. (3.5)

Therefore, (3.5) reduces to the simple relationship -
C,=-¢ > (3.6)
X f ¥ . ¥

which states that the translation speed depends only on the reduced gravity, the slope of the
bottom, and the Coriolis parameter. When the procedure is applied to equation (2.7), one
finds that all the integrals vanish identically indicating that the integrated forces in the x direc-
tion are in balance for any translation speed. In the deep ocean, the typical numerical values
for g', S, and fare g’ ~2 x 10~ ms2, §~ 002, and f~ 107* 57, s0 the predicted transta-
tion speed is ~4 cm s, which is comparable to other flows near the ocean floor. The pre-
dicted speed (3.6) differs markedly from the B-induced translation in the upper ocean because
the latter strongly depends on the properties of the eddy (e.g.,, Nor, 1981b, equation 3.6)
whereas the former does not.

With the aid of (3.6) we can find the general behavior of the interior of the eddy. To do so,
(3.6) is substituted back into (2.7) and (2.8) and the resulting eguations are written in polar
coordinates

ov, vy v, v} P . oh 3.7
V— et —— e — e fly = g — .
“or  r 20 r & or
)R U | TSR VS 8 oh
Vp—+——+ + ,—="”f— > 3.8
or r 08 r S & o0 ’ @.8)

where v, and v, are the tangential and radial velocities. The continuity equation takes the form

i L] 0 =0 3.9
5("”;)+5‘6(Ve)ﬁ . 3.9

The system of equations is independent of C, showing that the interior structure is not
affected by the translation. It can be shown that with the boundary conditions (2.9) and (2.10)
the system always has radially symmetric solutions (i.e., v, = 0; 8/20 = 0). Such solutions are
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similar to the known solutions for upper-ocean eddies with uniform potential vorticity
(CSANADY; 1979; FLIERL, 1979a). Radially symmetric solutions for varying potential vorticity
can also be derived for (3.7) to (3.9), and an example of such a case is considered in Section 4.
Whether the potential vorticity is uniform or not, solution (3.6) and the system (3.7) to (3.9)
show that the translation speed does not depend on the eddy interior, the interior structure is
not affected by the translation, and the interior solutions correspond to circular eddies with
purely tangential movements.

The independence of the topographically-induced translation {(C,) on the intensity, depth,
and volume of the eddy results from the fact that the eddy migrates as if it were a solid body
with a density (p + Ap). This can be demonstrated by considering the gravitational force (Fp),
which acts in the downhill direction

F,= —gApSf f hdxdy (3.10)
. A

and the integrated Coriolis force (F,), Whic‘hl acts on the whole eddy

F = pjcxf h dx dy. G.11)
A

Both forces are independent of the swirl speed and are linearly proportional to the volume of
the eddy. If the eddy translates as if it were a solid body, the forces should be in balance (i..,
F, = F,). Such a balance requires C, =—¢ 'S/f, which is identical to the result (3.6) obtained
by mtegratmg the full equations for fluid motion (2.7) to (2.8) indicating that the fluid circulat-
ing within the eddy has no effect on the topographically-induced movement.

The fact that the predicted translation speed (3.6) is independent of the intensity, size, or
volume of the eddy is of fundamental importance. It means that a group of isolated eddies of
different sizes and strengths but equal densities will travel at a uniform speed (Fig. 2).
Simiiarly, a pack of isolated eddies which are very close to each other {but not touching) will
also translate at —g'S/f.

Fig. 2. A sketch of a group of isolated eddies, with different sizes and intensities but with equal

densities, translating on & sloping bottom. All eddies translate with the same speed (C, =—g'S/f) at

S0° to the right of the downhill slope. Dashed lines indicate lines of equal depth; the depth decreases

with y. The uniform translation speed results from the fact that the translation is independent of the
properties of the eddy.
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4. ANALYSIS

Validity of assumptions

The foregoing theory relied on the assumption that the upper layer is infinitely deep.
However, our result is adequate not only for an infinitely deep upper layer but also for some
upper layers with a finite depth, To illustrate this point, we shall consider the potential
vorticity for an upper layer with a finite depth (H — Sy; § < 1) in the same coordinate system
used earlier (i.e., moving with the eddy at its own speed). In this system, the upstream upper
layer appears to the observer to be flowing toward the eddy at a speed C,, and the problem
resembles a uniform homogencous flow approaching an isolated bump. The corresponding
potential vorticity equation is

D joviiox—ouw/ey +f D 9

“( ): , —=—+1iVj, d.1)
Dy H-Sy—-h+1 Dt ot

where & = #'t + v'j. Here, H ~ Sy is,the undisturbed depth of the upper layer, &’ and v are the
horizontal velocity components induced by the eddy, which acts as obstacle, / is the eddy
depth, and n is the free surface vertical displacement (< k), Upstream, &' = ' = 0 so that the
potential vorticity is ~f/H. Therefaore,

v~ u' o~ O(fhi/H), “4.2)

where [ is the length of the eddy. If H — oo, then #' —» 0 and v - 0, showing that for an
infinitely deep fluid the condition of a freely transiating eddy is certainly adequate. If the
upper layer depth is finite, then #’ and v are not identically zero and, for our solution to be
valid, we must require that |« | <|C, | and |v'|<|C, |. Hence, condition (4.2) gives

g'HS
£k

as being the condition for negligible influence of the flow in the upper layer on the translation
speed.

Condition (4.3) is satisfied by many, but not all, isolated cold eddies. For instance, if
Ap/p~2x 105, H~5,000m, S~0.04, f~104 s, I ~20km, and # ~ 20 n, then the
right-hand side of (4.3) is about 10 so the perturbations in the upper layer have a small effect
on the translation speed as required. However, if # ~ 200 m and all other scales are similar to
those above, the right-hand side of (4.3) is of order unity and the condition is not met.

< 4.3)

Stability

The physical reality of our analysis depends on the stability of the eddies. A detailed
examination of the stability is beyond the scope of this study but some aspects of the problem
can be examined by considering the magnitude of the Richardson number (Ri = g'h/vi) near
the rim. It is clear that when the orbital velocity is non-zero along the ‘front’ (i.e., where the
interface intersects the floor, 4 = 0) then the Richardson number is smaller than 1/4 in a ring
confined between the edge of the eddy and a smaller circle with a radius of, say, 7. In this
region local instability will probably occur; it can be avoided only if vy 0 as k-0,

Aside from such local instability, the whole eddy may be baroclinically unstable (under
certain conditions) as suggested by Grirrrtius and Linpex (1981) and GRIFFITHS ,
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KivworTte and STErN (1982). However, even if the eddy is baroclinically unstable and, con-
sequently, breaks into smaller eddies, the translation speed will not be affected because it is
independent of the properties of the eddy. In other words, the resulting smaller eddies will con-
tinue moving at the same speed as the parent eddy because the size and depth have no
influence on the migration.

Interior structure and absolute velocities

As the migration is associated with orbital movements it is of interest to examine the total
movement {hat a fluid parcel will have. For this purpose we shall consider the simplest possible
eddy that obeys (3.7) to (3.9). We shall assume that the swirl velocity (v,) is parabolically
distributed, i.e,,

vy = 2Roﬁ'(L— 1), (4.4)

ro

where r; is the radius of the eddy and Ro is the Rossby number defined on the basis of the
maximum swirl velocity and its distance from the center (r,/2). There is an upper limit on the
magnitude of the Rossby number that can be associated with (4.4). It cannot assume values
larger than 1/4 because otherwise the negative relative vorticity would be larger than £ {(as
r-»0), which is impossible.

For the present discussion it is not important to know how {or why) such an eddy has been
formed because we are merely interested in its behavior on a sloping bottom. The depth
distribution, corresponding to (4.4), is found with the aid of (3.7) (with v, = 0 and /30 == 0) to
be

h=h + Rof'r**(2QRo — 1)/g" + 2Raf*r*(1 - 4R0)/3g'r, + Ro* f*ri/grs, (4.5)

where /i is the maximum depth of the eddy (ie., at » =0). The potential vorticity P(r) is

PG =%[4Rof{%— i )+ ]

which, in contrast to that of the upper-ocean eddies considered by Csawapy (1979) and
FrigrL (1979a), is non-uniform and varies with r. In view of (4.5}, the eddy radius (r = #,

h=0) is
1 .'f! 1/2
o [ m_g_RJ ] ﬁ 4.6)

Hence, the ratio between the deformation radius (R,) and the radius of the eddy is given by

R
~4 —[Ro(1 - Ro)/3]"".
Iy

The relationship is shown in Fig. 3, which illustrates that the eddy radius is usually (Ro < 1),
much larger than the deformation radius. Bven if the Rossby number assumes its highest
possible value (1), the eddy radius will be four times larger than the deformation radius.
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Rd/l'a

.25+

Fig. 3. The dependence of the ratio between the deformation radius (Ry) and the eddy radius (ry)
on the Rossby number (Ro).

With the aid of (3.6) and (4.4) the total velocity components can be written as

", =—§;—2Rofr(i- 1) sin 6
o @7

¥
y, = ZRofor(—‘w—— 1 )cos 8,

Fo

where the subscript a indicates that the variable in question corresponds to the absolute value
relative to a fixed point in space. As there is no limitation on the ratio between the translation
speed and the orbital velocity, the migration can be faster than the swirl speed so that 1, can
be negative for all values of », Simple scaling suggests that such would be the case whenever
8 > hfr,. For instance, if A~20m, ry~20km, g'~2x 10 ms?, §~004, and
S~ 10 s, then C, ~—0.08m s whereas the u component resulting from the orbital
movement [2Rofr(r/r, — 1) sin 8] is smaller, about 0.002m s,

Possible friciional effects

Because the eddy is translating on a solid bottom, frictional effects are expected to be larger
than those of upper-ocean eddies and interior eddies. For this reason, it is important to
examine, at least qualitatively, some of the effects expected in reat fluids.

One intuitively expects to find two major effects of dissipative mechanisms. The first is that
of friction on the swirl speed, which will slow down and thus will tend to flatten out the eddy.
The second is the effect of friction on the transtatory movement of the entire eddy.

The spin-down effect operates on large time scales; for interior and upper-ocean eddics its
time scale is years (see ¢.g., GILL, 1980) and for the eddies under consideration it is probably
months. The effect of a continuous reduction in the swirl speed on the translation speed is
probably fairly limited because, as we saw earlier, the calculated translation speed (3.6) is
independent of the swirl speed.

In contrast to the above limited effect, the influence of the component of the bottom stress
that opposes the translation will probably be important. The presence of such an opposing
force will cause a change in the direction of translation because there is no force that can
balance it if the eddy continues to move steadily in the x direction (i.e., along lines of constant
depth). It can only be balanced if the eddy changes its direction from a pure movement in the
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Fig. 4. A schematic diagram of the possible balance of forces when frictional forces are present.

The gravitation force (Fy) has two components; one balances the Coriolis force acting on the whole

(F,), and the second balances the opposing frictional force (Fr). Dashed lines denote lines of equal

depth, As a result of friction, the translation takes place along lines of increasing depth instead of
‘ lines of equal depth, The angle o represents the direction of translation,

negative x direction to a direction including a downhill component (Fig. 4). Under such condi-
tions the downhill force resulting from the weight of the eddy has two components. One
balances the Coriolis force, which acts on the eddy as a whole, and the other balances the
frictional force, which acts in the direction opposing the translation (F}. That is.

fofh dxdp =g'S cos aff hdxdy
A A

and
‘ Fr=g'5sin 'aff A dx dy,
- .

where o is the angle at which the eddy is translating, C = (C2 + Cf:)if 2 and F " is the unknown
frictional force. :

1t is, therefore, expected that due to bottom friction, the eddy will not move along lines of
constant depth but rather along lines of slightly increasing depth (Fig. 4). A loss of potential
energy is assoclated with such motion; the loss corresponds to the work done against the
bottom stress. However, while such considerations of possible frictional effects are plausible,

they are speculative and a detailed analysis is required to find the complete response to fric-
tion. ' :

5. SUMMARY AND CONCLUSIONS

Tt is appropriate to repeat the limitations involved in our analysis, The most important
assumptions that have been made are that the eddy is homogeneous (in the sense that its
density does not vary), that the slope of the bottom is uniform over the length of the eddy, that
frictional effects are negligible, and that the depth of the eddy is small so that its translatory
movement does not cause large disturbances in the fluid above, It has been demonstrated that
the assumptions are valid in various cases of practical interest, but in many other cases they
may be violated.

The results of the study can be summarized; (1) A sloping bottom causes a translation of
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isolated cold eddies in a direction 90° to the right of the downhill slope. (2) As the isolated
eddy is translating, its whole mass anomaly is carried along and none is left behind. (3) The
predicted translation speed is given by g(Ap/p)S/f; where Ap is the density difference between
the layers, S is the bottom slope, and fis the Coriolis parameter, (4) Conclusion (3) is valid
for all eddies, independently of their volume, intensity, nonlinearity, size, and height. (5) It is
estimated that, due to a sloping bottom, deep-ocean eddies may migrate as fast as 5 to
10em 5! and may travel as much as a few thousand kilometers away from their origin.
The conclusions demonstrate that isolated cold eddies on a sloping bottom have a unique
behavior differing substantially from other eddies in the ocean. Much work, both
observational and theoretical, is suggested by our present investigation; the effects of con-
tinuous stratification, steering currents, and eddy—eddy interactions are a few examples.
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