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ABSTRACT

The question of which oceanic eddies can split and break up is addressed with the aid of two
simplified analytical models which rely on the conservation of integrated angular momentum.
First, an inviscid barotropic model with an initial round vortex is considered. The conditions
necessary for the breakup of the vortex without exchanging angular momentum with its
environment are examined. A solution for the final state is obtained without solving for the
highly nonlinear transient splitting process. It is found that only cyclonic eddies meet the
necessary condition for splitting—anticyclonic eddies can never split, no matter what their structure
is. The cyclones are subject to a critical intensity above which breaking is possible and below
which splitting is impossible. Specifically, cyclones with relative vorticity higher than f (where
[ is the (uniform) Coriolis parameter) can split into 2 eddies, whereas cyclones with a vorticity
higher than f/3 can split into 3 or 4 vortices. The peculiar asymmetry between anticyclones
and cyclones is a result of the conservation of integrated angular momentum. This can be
demonstrated by noting that during the splitting process, the newly formed eddies are pushed
away from their original center of rotation acquiring planetary torque. Therefore, in order for
splitting to occur, the torque of the parent eddy must be large enough to accommodate for this
addition of planetary torque. It turns out that only cyciones, which typically have more
absolute angular momentum than their anticyclonic counterparts (because they rotate in the
same sense as the spin of the earth), have enough torque to allow splitting. The above analysis
is also applied to the splitting of a fully nonlinear zero potential vorticity lens. As in the
barotropic anticyclonic cases, splitting is strictly impossible because the parent eddy does not
have enough angular momentum.

1. Introduction

The question of eddy splitting is an important
one because of the associated transfer of energy,
momentum and mass from large to small scale.
Oceanic observations suggest that eddy fission is
not at all a simple process. Despite close examin-
ations of many anticyclonic rings, there have not
been any observations of such rings that break
up. On the other hand, there is some obser-
vational evidence that cold-core rings (Fig. 1) do
split up (see e.g., Cheney et al., 1976; Richardson
et al., 1977; Ring Group, 1981; Hagan et al,
1978).

In view of these and the fact that some eddies
are unstable (see, e.g., Saunders, 1973; Griffiths
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and Linden, 1981; Cushman-Roisin, 1986; Ripa,
1987), it is of interest to examine the fission
process from a theoretical point of view. Using
idealized models, we shall demonstrate analyti-
cally that, just as the oceanic observations
suggest, anticyclonic rings can never split
whereas cyclonic rings meet the necessary con-
dition for breaking if their intensity is beyond a
“critical” value. To do so we shall examine the
conservation of angular momentum and the
conditions required for the breakup of an ideal-
ized eddy to a set of stationary eddies adjacent to
each other. We shall connect the final steady
state to the original state without examining the
highly nonlinear transient splitting phenomena.
Such a connection can be done with the aid of
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Fig. 1. A sequence showing the structure of a cold-core ring in the North Atlantic during September and December
1974. Depth (m) of the 15°C isothermal surface is based on ship surveys with 760 m XBT’s (adapted from Cheney
et al. 1976). Note that the cyclonic ring appears to be splitting into two off-spring.

conservation of torque, vorticity and mass. As in
similar adjustment problems, some energy must
be allowed to radiate away via long gravity
waves.

So far, there have been no direct analytical
attempts to study the fission of eddies. A some-
what related problem has been addressed by
Thompson and Young (1989) who attempted to
compute the breakup of a straight strip of current
into a chain of vortices. However, they did not
apply the conservation of angular momentum
and, hence, could not close the problem; they
derived an “upper bound” for the resulting

eddies’ size. The same problem was studied
numerically by Salmon (1983) and experimentally
by Griffiths et al. (1982).

We shall begin our analysis with an examin-
ation of the conservation of integrated angular
momentum for an anomalous patch of fluid
bounded by a vortex sheet (Section 2). With the
aid of the integrated torque relationship (derived
in Section 2) we shall first look at a simplified
barotropic vortex (Section 3) and then proceed
and address the fission of zero potential vorticity
lenses (Section 4). The results are discussed in
Section 5 and summarized in Section 6.
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2. Torque

This section is devoted to a detailed examin-
ation of the conservation of integrated angular
momentum in a rotating fluid. For the conser-
vation of angular momentum in nonrotating
systems (= 0) the reader is referred to Csanady
(1964, pages 88 and 112).

The conservation of torque for the special case
of a rotating layer whose depth vanishes along its
boundary was first discussed by Ball (1963). His
results are extended here to the more general case
of a region with anomalous vorticity bounded by
a vortex sheet along which the depth is not
necessarily zero nor is it necessarily constant
(Fig. 2). Consider a patch of fluid bounded by a
vortex sheet obeying the usual shallow water
equations,

where the notation is conventional (i.e., f is the
Coriolis parameter, ¥ and v are the horizontal
velocity components in the x and y directions,
h(=H+n) is the total depth and g is the
gravitational acceleration). As usual, for a
“reduced gravity” model g should be replaced by
g’ (where g=Ap/p, with Ap being the density
difference).

Multiplication of (2.1) by hy, (2.2) by hx,
subtraction of the first resulting equation from
the second, and consideration of the continuity
equation gives,

a d
hl - il — b2
% [A(xv — yw)] + 3 (huvx — hu? y)

+ % (hxv* — huvy) + fh(xu + yv)

gya(h) gxa

2 ox (hz) 0.

2.4)

6u+ au+v——fv+gih-—0 2.1
ot ox ox We now note that a multiplication of (2.3) by
s s s o (x%+ y?)/2 gives,
v v v
e, = 2.2
o U TGy T/ tEG =0 G0 L +yoym+ Lt +y2y)
oh 0
it (hu) +o (hv) 0, (23) + o [Av(x? + y?)/2] = hux + hvy,
LYy
X

oy t)=0

Fig. 2. Schematic diagram of a patch of barotropic fluid bounded by a vortex sheet. The vorticity in the patch is

different from that outside the line ¢(x,y,t) =0.
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which upon substitution into (2.4) yields,

2 txe =yt (2450120
+ 2 [hulxv — yu + f(x% + y2)/2]]
0x
+ aiy [holox — yu + f(x? + y2)/2]]

_ 80 2,80 . _
26“W)+2®uh)0 (2.5)

Using (2.3) to eliminate 0A/0t from the first term,
and employing the definition of the total
derivative (i.e., D/Dt=d/0t +ud/ox +v0/dy) to
express the term

£ oo -yt fx2 45012,
eq. (2.5) can be written as

h b[—); [xv— yu + f(x? + y?)/2]

_ &80 o, 80
2 ox (yh?) + 2 3y (xh?)=0. (2.5a)

Integration of (2.5a) over the patch (S) gives,

% LJ’ hlxv — yu+ f(x? + y2)/2]1dxdy

~ [ =t s 4221 2 has)

S

—§§Umw+mwﬂ=q 2.6)
where Stokes theorem for the conversion of
surface to line integral has been used and
the arrowed circle indicates counterclockwise
integration. A proper interpretation of d.S shows
that the second surface integral vanishes (see e.g.,
Ball, 1963, p. 242) so that we get,

d
a J;j H(xv—yu) + f(x? + y?)/2]dxdy

(yh*dy + xh2dx)=0
20,
“

J

Q.7

v

1
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which is our desired relationship for the conser-
vation of integrated angular momentum.

It is easy to see that in Ball’s (parabolic) case,
the last line integral vanishes at all times because
h=0 along the boundary. By contrast, in the
more general barotropic or baroclinic “reduced
gravity” cases, h is not zero along the boundary
nor is it necessarily constant along the edge so
that it is not a priori obvious what the value of
the line integral is. Note that the integral
represents the torque exerted on the patch by the
surrounding fluid. Also, note that it is possible to
illustrate that for features symmetrical with
respect to x and y, the line integral is identically
zero. In fact, the integral will not vanish only
when the boundary has some sort of an asym-
metrical “turbine-like” structure.

For simplicity the line integral will be taken to
be zero which is equivalent to the statement that
no net torque is exerted on the patch by the
exterior fluid. It is expected that violent splitting
processes may involve asymmetrical turbine-like
features for which the integral may not vanish,
but it is of interest to examine ‘“‘gentle” and slow
fission processes that do not involve exchange of
angular momentum with their environment.
Hence, we shall take the integrated angular mo-
mentum (in polar coordinates) to be,

d 72
ar LJ h (fT + rv,,) rdrdf=0.

Three comments should be made with regard to
(2.7) and (2.8). First, note that Saunders’ (1973)
splitting experiments clearly support the ‘“non-
turbine” symmetry concept (see (his) Fig. 2).
Second, note that the integrated pressure torque
always vanishes if one assumes that the speeds
outside the splitting eddy are negligible. This
is the case because, for an exterior with negli-
gible velocities, the depth along the boundary
¢(x,y,1) =0 is constant (due to the continuation
of pressure) so that I reduces to,

(2.8)

h2
%fﬁydy+xdx,

which is identically zero for any closed contour.
Even though it may not be necessary for the
conservation of integrated torque, we shall re-
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strict ourselves to barotropic eddies of O(10 km),
much smaller than the typical barotropic Rossby
radius O(1000 km). Under such conditions, the
flux of the outside fluid (displaced by the vortex
sheet during the splitting) is distributed over a
rather large area resulting in negligible speeds.
This neglect of speeds (but not necessarily the
transports) outside the vortex is not new. It is
essentially identical to the negligible exterior flow
assumption made in a similar situation involving
eddies and vortex sheets (Nof, 1988a, b). Also,
since the boundary is slippery, the condition of
weak flow outside is equivalent to the neglect of
motion in a very deep lower layer of a two-layer
model.

Third, it should be pointed out that, in view of
(2.8), the integrated angular momentum may also
independently vanish for the exterior because I
goes to zero when the integration boundary is at
infinity and the velocities decay rapidly enough
as x,y — o0. Since there are, obviously, changes
in the value of the integral 4 [{ Arv,rdrdé during
the splitting process (due to the changes in the
position of the fluid), it follows that the exterior
integral of the relative angular momentum
{{ hroprdrd® may not vanish even though the
velocities are negligible. This non-vanishing of
the integral does not violate our assumptions: it
is consistent with the fact that the length scale
outside the eddy is very large compared to the
eddy length scale so that neither the volume flux
nor the integrated torque vanish even though the
velocities are negligible.

3. A single-layer model

Although the angular momentum principle
derived in the previous section is applicable to
many systems, we shall, for simplicity, consider
first a single layer barotropic model. Consider
then the single layer model shown in Fig. 3. The
initial barotropic eddy consists of a vorticity
patch (v,= ar, where v, is the initial tangential
velocity, o is a constant, and r is the radius)
bounded by a vortex sheet beyond which the
ocean is stagnant. The relative vorticity (2o) can
be either positive or negative and the velocity is
discontinuous along the edge—a condition that is
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not uncommon in inviscid flows (see, e.g., Nof,
1988a, b). It is assumed that after a transient
splitting process a final steady state is reached.
The final state consists of 2, 3 or 4 stationary
eddies that “kiss” each other as shown in Fig. 4.

As mentioned, we shall assume that the speeds
(but not necessarily the transports) outside the
splitting vortex are small and can be neglected.
This is based on the fact that the vortex length
scale [~O(10 km)] is much smaller than the
barotropic deformation radius [ ~O(1000 km)] so
that the outer fluid that is pushed aside by the
moving boundary is distributed over a rather
large area resulting in small speeds.

3.1. Constraints

The initial and final states are connected with
the aid of the following principles.

(i) Vorticity: since the model is inviscid,
potential vorticity is conserved so that (in polar
coordinates),

|2 )+ ] / (H+n)

=[5 o+ / H+n)=fH, (D
where H, is the *“potential vorticity depth,” H the
undisturbed depth, n the free surface displace-
ment (measured positively upward), and, as
before, r is the radius. The subscripts “i” and “f”
denote the initial and final states. Note that, even
though the free surface vertical displacement
plays a crucial role in the dynamics (because it
allows energy radiation via long surface gravity
waves) it can be neglected in (3.1) since
(H—H)/H,~0(1) whereas (n/H)~ 0(10-3)
for a barotropic ocean [H ~ O(1000 m) and
n~0O(1 m)]. It will become clear later that, in
fact, in all of our relationships and budgets  can
be neglected.

In view of the above and the initial condition,

[/ H
v =or, where o= % L(—}-I—p) - 1], (3.22)
one finds that,
vy=ar+0 (ar 1). (3.2v)
H
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Fig. 3. Initial conditions for the barotropic model. The free surface vertical displacement #; is measured upward
from the undisturbed free surface. As in Nof (1988a), the velocity is discontinuous along the edge. The radius of the
eddy is typicaily ~O(10 km), much smaller than the barotropic deformation radius ~O(1000 km). The subscript
“i” indicates association with the “initial” state. Later on we shall use the subscript “f” to indicate the final state.

(ii) Volume conservation: this constraint can be

This essentially implies that the vorticity of the .
written as,

final off-spring is identical to that of the parent

eddy (i.e., the velocity distributions are identical J J (H+n)rdrdd=n f j (H +n)rdrd8, (3.3a)

as well). s, s,

Tellus 42A (1990), 4



THE ROLE OF ANGULAR MOMENTUM IN THE SPLITTING OF ISOLATED EDDIES 475

fo= Rf«2

Fig. 4. The assumed final structure of the off-spring (i.e., the eddies resulting from the splitting). Three possible
states are shown, » is the number of off-spring, r, is the distance from their center to the original center of rotation,
and R is their radius. The dashed line shows the edge of the parent eddy.

where S denotes the area of the vortex and nis  angular momentum (AM) of the patch is
the number of off-spring. With n/H ~O(10-3),  conserved:
(3.3a) can be approximated by,

j '[ [fr2/2+ rol(H+ n)rdrdé

R}=nR%. (3.3b) s,
(iii) Angular momentum: following our earlier =n [ j [fr?/2+ rol(H + n)rdrdé. (3.4
analysis in Section 2, we shall assume that the S,
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For a vortex (with radius R;) whose center is
situated a distance r, away from its original
center of rotation, the integrated angular momen-
tum is,

2r PR,
AM = j f [3/(r3+ 2rrg cos 6+ r?)
0 0

+rvgcos 0+ rogl(H+n)rdrdd,  (3.5)

where r and 0 are now measured from the center
of the eddy. Since we focus on radially symmetric
eddies (0/00 = 0), (3.5) takes the simpler form:

R,
AM=21:J G fr2+ fr22 4 rog) (H + 1) rdr.
’ (3.52)

This indicates that a vortex that is pushed a distance
ro away from its original center of rotation acquires
angular momentum due to the term fri/2. We shall
see later that this fact is of crucial importance to
the splitting process.

For our splitting vortex, (3.5a) and (3.4) give,

R
J G2+ ro)rdr
0 . (3.6)
=n J (L f(r2 + r2) + rv,)rdr,
0

because, as before, (5/H) < 1. Note that relation
(3.5) was also used by Cushman-Roisin (1989)
who examined the merging of lenses (i.e., patches
for which it is obvious that the angular momen-
tum is conserved since & = 0 along the edge).

(iv) Energy: as mentioned, during the fission
energy is radiated away via long gravity waves so
that E; > E;, where E is the total available energy
(i.e., the sum of the kinetic and available
potential energy):

E= JT [(H +n)v3/2 + gn?/2]ds. 3.7
S

Noting again that (n/H)~ 10~3 and v ~ O(gn)

we find that (3.7) gives,

AE=I—IIJ vgids——ﬂjj v3ds
2.0, 2 JJs

or

& R
AE=1tHU' vgirdr—-nj vﬁ,rdr]. (3.8)
0 0

D. NOF

which is our desired expression for the energy
loss.

3.2. Connecting the final and the initial states

We shall first determine the conditions necess-
ary for the splitting (of the parent eddy) into two
off-spring (n=2). For such conditions, (3.3b)
gives R, = R;-~/2 which upon substitution into

(3.6) (together with (3.2a)) gives,

1 « r
—+—==—=). 39
(%) )
Since the final eddies cannot overlap (see Fig.
3b), r, must be at least as large as R; so that (3.9)
yields,

a=f[2, n=2, (3.10)

as the minimum value required for splitting (Fig.
5). Obviously, there can be no splitting for nega-
tive o (anticyclones) because for negative alpha
(3.9) implies that r, < R;/+/2 which is impossible.
One can see from (3.9) that cyclones with o
greater than f/2 will split into a set of vortices
that (instead of kissing each other) will be separ-
ated from each other (i.e., r, > R;). Substitution
of the appropriate quantities into (3.8) shows that
the relative energy loss [AE/E;=(1—1/n)] is
exactly 50%.

The unusual cyclone-anticyclone asymmetry
results from the condition that, as the off-spring
are formed and pushed a distance r, away from
their original center of rotation, they acquire
planetary angular momentum 3 {f fr2rdrd@. Con-
sequently, their final integrated torque is rela-
tively large so that only parents whose angular
momentum is large to begin with can produce
them. Since cyclones rotate in the same sense as
the spin of the earth, their absolute angular
momentum is typically larger than that of their
anticyclone counterparts, making them much
more likely parents.

By repeating the above procedure for three off-
spring (n = 3) one finds from the angular momen-
tum constraint,

(1 + 2-“) = (’i)
f R,

In contrast to the two off-spring case where

ro > R;, we now have r, > 2R,/\/3 (see Fig. 3b) so

(3.11)

Tellus 42A (1990), 4



THE ROLE OF ANGULAR MOMENTUM IN THE SPLITTING OF ISOLATED EDDIES

o/f
Intensity \\\\\\\\
(i.e., half of 08 splitting
s‘a,u:ir;:t;;ldy 0.6 (cyclones)

no sblittiﬁg »
¢ (anticyclones)

477
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Fig. 5. Schematic diagram of the fission regimes for the barotropic model. For splitting into two off-spring (n = 2),
it is necessary that the intensity of the parent vortex (a) be larger than f/2 (hatched area). Anticyclones (dotted
area) correspond to negative o whereas cyclones (crossed area) are associated with positive a. For 3 and 4 off-spring
the line separating splitting from no splitting is a horizontal line (parallel to the line corresponding to n=12)
intersecting the vertical axis at f/6 (not shown). The length scale “a” is a typical radius for the barotropic eddies

(much smaller than the barotropic deformation radius Ry).

that the critical intensity is,

n=3. * (3.12)

a =f/6,

The energy loss is larger than that in the two off-
spring case and amounts to about 677;.

For four off-spring (n = 4), one again finds that
the critical intensity is,

a=fl6, | n=4,

(3.13)

so that the vorticity (2o) is f/3. Note that the
energy loss is larger than those in the two and
three off-spring cases and amounts to 75%,.

4. Zero potential vorticity lenses cannot split
and break up
Since many warm-core rings have a lens-like
structure (Csanady, 1979; Flierl, 1979), it is of

interest to examine their fission conditions. To do
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so we shall consider lenses overlying an infinitely
deep passive lower layer with density p. For such
nonlinear eddies the general form of the conser-
vation of mass and angular momentum is very
similar to that of the barotropic eddies,

R, R
f hirdr=nJ. herdr, 4.1)
0 0
R,
j hi(3 fr? + rog)rdr
(1)
R,
=n J Rl fGr2+r2) + roglrdr, 4.2)
]
where
Vg = Vgr = —f7/2, 4.3)

and h,=h—f2r2/8¢g’ (here, h is the maximum
lens’ depth, #(0), and g’ is the “reduced gravity”
gAp/p with Ap being the density difference
between the two layers). In view of (4.3), the left-
hand side of (4.2) is identically zero so that for
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Fig. 6. Numerical simulations of a frontal geostrophic reduced gravity model showing the emergence of
anticyclones from a field that initially contains an equal number of cyclones and anticyclones (adapted from
Cushman-Roisin and Tang (1989)). The left panel shows the initial depth contours with relative amplitude ranging
from —0.82 to 0.99; the right panel amplitudes range from —0.5 to 1.7. The time difference between the two panels
is about 100 rotation periods. The size of each basin is (16xR,) x (16nR,) where, as before, R is the Rossby radius.

each off-spring it is required that,

R
frgf hordr=0, 4.4)
0

a condition that obviously cannot be satisfied
because it contradicts (4.1). The reason for the
impossibility of splitting is that each of the
(potentially) final vortices must have a total
integrated angular momentum of % fr2 ({ A, rdrdé
due to the fact that it must have been pushed a
distance of r, away from its original center of
rotation. This means that the parent eddy must
also have a positive angular momentum (relative
to its own center). It is easy to see that this is not
the case for a zero potential vorticity parent
(because it has zero angular momentum) so that
breaking up is impossible. It is of interest to note
that an allowance for filamentation of the kind
described in Cushman-Roisin (1989) does not
resolve the difficulty in the splitting lenses model
nor does it resolve the difficulty in the previously
considered model. Also, an allowance for a steady

orbital migration of the final lenses does not
make splitting possible.

5. Discussion

Before comparing the results to actual oceanic
observations, numerical simulations and labora-
tory experiments, it should be mentioned that due
to our idealizations and approximations, a quan-
titative comparison is impossible. We shall
shortly see, however, that a qualitative compari-
son can be made and that such a comparison
produces favorable results.

5.1. Relationship to oceanic observations

As mentioned, despite close observations of
many warm-core rings, fission of anticyclones has
never been observed in the ocean. However,
there have been two sets of observations that
qualitatively describe the fission of cold-core
rings. The first is reported in Cheney et al. (1976)
and was shown in Fig. 1. The second involves

Tellus 42A (1990), 4
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rings Art and Al and their structure is described
in Hagan et al. (1978), Richardson et al. (1977)
and the Ring Group (1981). The fact that only
cold-core rings have been observed to split is
consistent with our analysis. Also, the relative
abundance of mid-depth anticyclones in the
ocean (McWilliams, 1985) is consistent with our
results which state that cyclones might break up
whereas anticyclones will remain coherent.

5.2. Relationship to numerical simulations

The peculiar cyclone-anticyclone asymmetry
has been noticed—but was not fully explained—
in at least 3 reported simulations. Williams and
Yamagata (1984) observed that intermediate
scale anticyclones last much longer than their
cyclonic counterparts. They attributed the differ-
ence in life times to mean currents. Cushman-
Roisin and Tang (1989) report that in generalized
geostrophic turbulence only anticyclones ulti-
mately emerge. As shown in Fig. 6, from an
initial field of sixteen cyclones and sixteen anti-
cyclones (left panel) only seven large anticyclones
emerged (right panel). They propose that the
effect may be, at least partly, due to the nonlinear
P effect. Our analysis suggests, on the other hand,
that such cyclone-anticyclone asymmetries may
simply be a result of the fact that only cyclones
meet the condition necessary for breaking up.

5.3. Relationship to laboratory experiments
Fission in the laboratory has been observed by
Saunders (1973), Griffiths and Linden (1981),
and Kostyanoy and Shapiro (1986). It is rather
difficult to compare their results to our analysis
because, in contrast to our model and the numeri-
cal simulations that involve only one active layer,
laboratory eddies often have a very strong
countervortex in the adjacent layer or some other
form of coupling to the surrounding fluid. These
features are a result of the way that anticyclones
are usually produced in a rotating tank (see e.g.,
the collapsing cylinder aspect discussed in Nof
and Simon (1987)). In view of these, it is some-
times impossible to say whether the splitting in
the laboratory is the fission of a cyclone or the
splitting of an anticyclone. For instance, it
appears that in Saunders’ experiments the
cyclone on top was the most probable feature
responsible for the breaking. This is supported by
the experiments of Kostyanoy and Shapiro (1986)
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who found that only anticyclones with a cyclone
on top broke up.

5.4. Relationship to other stability criteria

It is of interest to point out that a cyclonic—-
anticyclonic asymmetry is also found in the
inertial instability case (Hess 1959, p. 306). This
instability is also related to angular momentum;
it is active whenever the total vorticity (curvature
and shear) is negative implying that only anti-
cyclones can be unstable. Our fission process and
the inertial instability criteria are both asym-
metrical but the asymmetry is not related because
the two processes address different physical
situations.

6. Summary

The main conclusion of this paper is that
intense cyclonic eddies meet the necessary
conditions for splitting (without exchanging
angular momentum with their environment)
whereas anticyclonic eddies do not. The detailed
results of the study can be summarized as
follows:

(i) An anticyclonic barotropic vortex that does
not exchange angular momentum with its sur-
rounding fluid cannot split into a set of two, three
or four steady off-spring even if energy is added
to it. Only cyclones meet the condition necessary
for splitting without exchanging angular momen-
tum. The cyclone-anticyclone asymmetry is due
to the direction of the earth’s rotation which
opposes the rotation of anticyclones and adds to
the rotation of cyclones. Specifically, as each of
the (potentially) final off-spring is formed it must
be pushed away from its original center of
rotation so that it gains a significant amount of
planetary torque (see equation (3.5a)). Since the
integrated angular momentum is conserved, the
potential parent eddy must also have a relatively
large torque. It turns out that only cyclones can
satisfy this condition because their total absolute
torque is typically larger than that of their
anticyclonic counterparts.

(ii) The necessary condition for the splitting of
a barotropic cyclonic vortex that does not ex-
change angular momentum with its environment
is that its vorticity be greater than a “critical
value” (see Fig. 5). The critical splitting state
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corresponds to off-spring that are “kissing” each
other (Fig. 4). When the vorticity is greater than
the critical vorticity, the off-spring are separated
from each other (i.e., their edges do not touch).

(iii) During the splitting process energy is radi-
ated away via long gravity waves. In the
barotropic case, 509, of the energy is lost when
the cyclone splits into two off-spring, 679, when
it splits into three and 759 when it splits into
four off-spring.

(iv) Steep, zero potential vorticity lenses (i.e.,
anticyclones with a surfacing interface) cannot
split and break up.

It is suggested that the cyclone-anticyclone
asymmetry might explain the fact that warm-core
rings have not been observed to split in the ocean
whereas the splitting of cyclones has been
qualitatively identified. In addition, the asym-
metry is consistent with the fact that mid-depth
anticyclones are abundant whereas mid-depth
cyclones are much less common. Also, our results
may provide an explanation for the observed
asymmetry in numerical simulations of geo-

D. NOF

strophic turbulence. Such experiments display the
emergence of anticyclones from a field that ini-
tially contained an equal number of cyclones and
anticyclones (Fig. 6). Finally, it should be said
that since we have merely addressed the
conditions necessary (but, perhaps, not sufficient)
for fission to occur, it would be useful to extend
this study to a more complete transient splitting
analysis. Extension to a general two-layer system
would also be useful.
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